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1 Depth Residual function

Reiterating our paper, the proposed depth residual in VI-BA for keyframe k and
feature point i takes the form of the log of the ratio between the measured depth
scaled/shifted by Sk and the feature point’s estimated depth:

rLik
= log

(
(akdik + bk) ·Ω(Cjfi, qj ,pj , qk,pk

)
) (1)

Cross-Keyframe Depth Transformation Ω(·) in Eq. (1) is the function
transforming the feature point depth w−1ij from its first observed jth camera

keyframe to the depth measurement camera kth keyframe {Ck}. Since feature
point Cjfi is parameterized as inverse depth, to recover it into euclidean space
Cj li, we have

Cj li = w−1ij
[
uij vij 1

]T
where inverse parameterization is known to be unstable in linearizations when
used directly. Instead, we define Cjhi = [uij , vij , 1]T , so

Cjhi = wij
Cj li

where we are able to deal with wij separately from the geometry transform
without explicitly unfolding Cjhi using wij . We define

Byi = wij
Bli (2)

where Bli is the ith feature position in {B} frame other than global {G}. If it
is global {G}, Eq. (2) becomes yi = wijli.

We can infer Ckyi through a series of transforms only on top of Cjhi using
the IMU-camera extrinsics (qC ,pc), jth and kth keyframe poses. Firstly, we
show how to get wij

jli that is jyi using Cjhi, where jli is in jth IMU keyframe
coordinate system

jyi = R(qC)Cjhi + wijpC
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Similarly, we can keep transforming all the way to the kth camera frame and get
Ckyi

yi = R(qj)jyi + wijpj
kyi = R(q−1

k )(yi − wijpk)

Ckyi = R(q−1
C )(kyi − wijpC)

Reiterating Eq. (2), along with [·]3 that extracts the 3rd element from the vector,
Ω(·) then becomes

Ω(Cjfi, qj ,pj , qk,pk) =
[Ckyi]3
wij

(3)

As shown below, Eq. (1) can be simply written as followings by substitution
using Eq. (3)

rLik
= log(akdik + bk) + log([Ckyi]3)− log(wij) (4)

Eq. (4) fits our problem space since our ML model yields inverse depth and our
feature point is parameterized as inverse depth, which results in a more stable
first-order approximation that is helpful for optimization purposes.

2 Formulation and Derivation of Closed-Form Solver For
Initializing VI-BA

It is well-known that VI-SFM is a highly non-linear problem, therefore it is
important to find an accurate initial linearization point. Our solution is based
on [4]. We employ visual reprojection error to approximate the 0th keyframe’s
pose and velocity in gravity-aligned global coordinate frame {G}. Then, the
remaining keyframe poses and velocities are inferred from IMU integration.

Given N keyframes, we define our estimated states X for closed-form solver
as following,

X = [v; g;∆p0;∆p1; . . . ;∆pN−1] (5)

where v, g are the initial velocity and gravity vector, ∆pk is the kth keyframe
position estimation difference. All parameters are expressed with respect to the
0th keyframe, and we re-express them with respect to {G} through g after the
solve. The rest of this section shows the derivation of the linear equation to solve
the problem.

As in [2, 5], we marginalize feature points, yielding constraints among
keyframes. Then, for feature points initial values in VI-BA, they are triangu-
lated after the closed-form solve.

IMU Measurement Model. First, we recall the IMU measurement model:

ωm(t) = ω(t) + bw(t) + ηw(t) (6)

am(t) = R(t)T (Ga(t)− Gg) + ba(t) + ηa(t) (7)

where ωm(t) and am(t) are the gyro and acceleration measurement at times-
tamp t, Gg = [0; 0;−G] is the gravity vector in gravity-aligned global {G}. ba(t)
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and bw(t) are IMU accelerometer bias and gyro bias respectively, and their cor-
responding noises are ηa(t), ηg(t). R(t) is the IMU body frame rotation w.r.t
gravity-aligned global {G}.

Integrated Keyframe Positions. According to [4] and IMU measurement
model Eq. (6), Eq. (7), we can write kth keyframe position as

pk = v∆tk + g
∆t2k

2
+ ξk (8)

where ∆tk = tk − t0 is the elapse timestamp up to tk since t0. ξk is the kth

keyframe integrated position in the 0th keyframe at timestamp tk without the
impact of gravity. The integrator is described in [5]

ξk =

∫ tk

t0

∫ τ

t0

R0(η)(am(η)− ba(η))dηdτ

where R0(η) is integrated using gyro measurement from t0 to timestamp η in
0th keyframe coordinate system. To remove the non-linearity of the estimation,
bw(t) is assumed to be 0. ba(t) is also assumed to be 0, since the small baseline
closed-form solution is resilient to accelerometer bias, which is studied in [3].
The bias random walk noises ηa(t), ηw(t) are treated as zero mean so it doesn’t
appear in the equation.

Defining integrated keyframe positions in 0th keyframe coordinate system
as P = [p0;p1; . . . ;pN−1], we form a linear equation with states in X and
Ξ = [03×1; ξ0; . . . ; ξN−1]

P = Fg +W


v

∆p0
...

∆pN−1

+Ξ (9)

where

F =

 03×3
...

∆t2N−1

2 I3

 , W =

 03×3 I3
...

. . .

∆tN−1I3 I3


Visual Constraint. We define the estimated ith feature point position at kth

camera frame as Ckli = [x, y, z]T . With undistorted 2D perspective projection
measurement [uik, vik]T , we can formulate the visual constraint for a single fea-
ture point in a linear equation:[

1 0 −uik
0 1 −vik

]
Ckli = KCk

ik li = 0 (10)

Then we transform Ckli to li in 0th keyframe coordinate system though pre-
calibrated IMU-camera extrinsics [RC ,pC ] and kth IMU keyframe pose [Rk,pk],
in which Rk is computed by zero bias gyro measurements integration.

Ckli = RTCR
T
k li −RTCRTk pk −RTCpC (11)
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Substitute Ckli in Eq. (10) with Eq. (11), we can write Eq. (10) as

Aikpk +Hikli = bik (12)

where

Aik = −KikR
T
CR

T
k , Hik = KikR

T
CR

T
k ,

bik = KikR
T
CpC

The ith feature point should be observed by at least by 2 keyframes among N
keyframes, and we can stack Eq. (12) together for all visual constraints w.r.t one
feature point as

AiP +Hili = bi (13)

where

Ai = Diag(Aik), Hi = [Hi0; . . . ;HiN−1]

bi = [bi0; . . . ; biN−1]

Aik = 03×3, Hik = 03×2, bik = 02×1 if kth keyframe doesn’t observe the feature.
As described in [2, 5], Hi in Eq. (13) can be projected on its left-nullspace to
marginalize out li. Then we have

A∗iP = b∗i (14)

Reiterating Eq. (9), for ith feature point observed by N keyframes, we can form
the linear equation for the visual constraint

F ∗i g +W ∗i


v
∆p0

...
∆pN−1

 = ri (15)

where

F ∗i = A∗iF, W
∗
i = A∗iW

ri = b∗i −A∗iΞ

Closed-form VI-SFM Least Square Problem. Suppose we have F feature
points in total, the closed-form VI-SFM solver is essentially to solve a least
square problem with a number of visual constraints as Eq. (15)

minimize
∑
i∈F
‖F ∗i g +W ∗i


v
∆p0

...
∆pN−1

− ri‖2,
subject to ‖g‖2 = G

(16)



Supplemental Material 5

3 Experimental Results for 10KFs under 10/4Hz settings

In Tab. 1, we present results of 10KFs under 10Hz/4Hz settings as specified
in [1]. We partition the datasets into 1.6 second trajectories for 10Hz and 3
seconds for 4Hz to run the same exhaustive initialization benchmark. Ours per-
forms best in the 10Hz setting, while results are mixed at 4Hz where ours per-
forms similarly to the baseline. This is expected, as lower framerates with the
same number of keyframes results in overall larger baselines (i.e., more motion).
Note that by construction, the 4Hz sequences result in slower initialization time
(at least 2.25s vs. 0.897s and 0.399s for 10KFs/10Hz and 5KFs/10Hz). For
practical applications, faster initialization is preferred.

Table 1: Aggregated initialization benchmark for Inertial-Only, Baseline and
our proposed method using various framerates on all EuRoC datasets. For each
metric, lower is better.

Metrics
10KFs 10Hz 10KFs 4Hz

Intertial-Only Baseline Ours Intertial-Only Baseline Ours

Scale Error (%) ¯||a|| > 0.005G 35.67 16.36 13.78 14.65 8.76 8.41

Position RMSE (meters) 0.123 0.038 0.034 0.066 0.061 0.064

Gravity RMSE (degrees) 1.89 1.42 1.38 1.36 1.32 1.36

log(Condition Num) ¯||a|| < 0.005G n/a 12.12 11.23 n/a 10.25 10.54
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